The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 03, 2007
Filed:
Jan. 23, 2003
Roberta Lee, Redwood City, CA (US);
Ary S. Chernomorsky, Millbrae, CA (US);
Mark J. Clifford, Los Altos, CA (US);
Roberta Lee, Redwood City, CA (US);
Ary S. Chernomorsky, Millbrae, CA (US);
Mark J. Clifford, Los Altos, CA (US);
Rubicor Medical, Inc., Redwood City, CA (US);
Abstract
An electrically activated surgical device includes a probe body, an active element and a structure for selectively electrically insulating and/or physically isolating the active element from the patient's tissue when the device is in use. The probe body defines an outer surface, a proximal end, a distal end and a window defined within the outer surface near or at the distal end. The active element is electrically connected to a power source and is configured to selectively assume a non-deployed configuration and a variable deployed configuration in which the active element at least partially emerges from the window out of the probe body. The insulating structure selectively insulates the active element from the patient's tissue when the device is inserted therein. In operation, a physician inserts the probe into the tissue, insulates the active element from the tissue (either before, during or after insertion of the probe), energizes the insulated active element using for example, radiofrequency (RF) power from the power source, and only then exposes the energized active element to the tissue. By insulating the active element during the energizing thereof, little or no current applied to the active element is dissipated in the patient's tissue, thus decreasing the time required to energize the active element and enabling lower and safer power levels to be applied to the active element during the energizing thereof.