The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 09, 2007
Filed:
Oct. 12, 2004
Vaidyanathan Kripesh, Singapore, SG;
Seung Wook Yoon, Singapore, SG;
Ganesh Vetrivel Periasamy, Singapore, SG;
Vaidyanathan Kripesh, Singapore, SG;
Seung Wook Yoon, Singapore, SG;
Ganesh Vetrivel Periasamy, Singapore, SG;
Agency for Science, Techology and Research, Singapore, SG;
Abstract
A process for packaging semiconductor devices for flip chip and wire bond applications, wherein specific materials of the semiconductor devices are protected during device processing sequences and dicing procedures, has been developed. After definition of copper interconnect structures surrounded by a low k insulator layer, a protective, first photosensitive polymer layer comprised with a low dielectric constant is applied. After definition of openings in the first photosensitive polymer layer exposing portions of the top surface of the copper interconnect structures, a dicing lane opening is defined in materials located between copper interconnect structures. Conductive redistribution shapes are formed on the copper interconnect structures exposed in the openings in the first photosensitive polymer layer, followed by application of a protective, second photosensitive polymer layer. An opening is defined in the second photosensitive polymer layer exposing a portion of the top surface of a redistribution shape followed by placement of a solder ball in this opening. A reflow anneal procedure results in the solder ball wetting and overlying only the portion of the redistribution shape exposed in the opening in the second photosensitive polymer layer. Separation of the solder ball, flip chip regions from the non-solder ball, wire bond regions is accomplished via a dicing procedure performed in the dicing lane.