The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 21, 2006
Filed:
Dec. 10, 2001
Prathima Agrawal, New Providence, NJ (US);
David Famolari, Montclair, NJ (US);
Prathima Agrawal, New Providence, NJ (US);
David Famolari, Montclair, NJ (US);
Telcordia Technologies, Inc., Piscataway, NJ (US);
Toshiba America Research, Inc., Piscataway, NJ (US);
Abstract
An arrangement including a scannable matrix for predicting the occurrence of a future collision of frequency hops of the channel hopping patterns on the respective activated first paths of a Bluetooth packet transmission system is described. A first coordinate of the matrix defines columns representative of a selectable window of N successive future time slots of the channel hopping patterns, and a second coordinate of the matrix defines rows each exhibiting the successive frequency hops of the patterns segments transmitted on a separate one of the activated channels during such window. The first coordinate is scanned to detect the occurrence, if any, of identical frequency hops appearing at an intersection of the then-scanned column and at least a pair of the rows. If a particular scan does not detect an occurrence of such identical frequency hops in any of the time slots of the scanned window, the first coordinate may be incremented by a selected number of time slots at the end of the scan, and the scan is then successively repeated for each new window that results. If and when identical frequency hops are detected in a particular future time slot during a scan, the channel hopping pattern(s) on a subset of the affected channels may be suitably altered to avoid the predicted collision.