The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 06, 2006
Filed:
Jun. 23, 2000
Arthur Kammeijer, Amsterdam, NL;
Joannes Dositheus Bos, Heemstede, NL;
Arthur Kammeijer, Amsterdam, NL;
Joannes Dositheus Bos, Heemstede, NL;
Academisch Ziekenhuis Bij De Univ., Amsterdam, NL;
Abstract
Upon exposure to UVB, the epidermal component trans-urocanic acid is not only photoisomerized into cis-urocanic acid, but will also, at least in part, be photooxidized into urocanic acid oxidation products. We hypothesized that urocanic acid oxidation products can mimic UV-induced systemic immunosuppression comparable to the suppressive properties already established for cis-urocanic acid. A crude mixture of urocanic acid oxidation products showed a significant suppression of the sensitization phase of the systemic contact hypersensitivity response to picryl chloride. Three of the urocanic acid oxidation products were selected for this study: imidazole-4-carboxylic acid, imidazole-4-carboxaldehyde and imidazole-4-acetic acid. Effects on the sensitization-, elicitation- and post-elicitation phase of contact hypersensitivity to picryl chloride in BALB/c mice were studied and compared to the effects of cis-urocanic acid. Imidazole-4-carboxaldehyde was equally effective at suppressing the sensitization phase as cis-urocanic acid. The triplet combination of the imidazoles showed more pronounced suppression than that induced by cis-urocanic acid. The most effective compounds for the suppression of the elicitation phase appeared to be imidazole-4-acetic acid and cis-urocanic acid. Significant suppression of the post-elicitation phase was only obtained with the triplet combination of imidazole-4-carboxaldehyde, imidazole-4-carboxylic acid and imidazole-4-acetic acid, which combination appeared to be effective at all three tested phases, Because these three urocanic acid oxidation products are present in UVB-exposed human stratum corneum, these compounds may play a role in UVB-induced immunosuppression.