The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 16, 2006
Filed:
Jun. 20, 2005
Mark Louis Nicolussi, Erie, PA (US);
Paul Robert Hokanson, Girard, PA (US);
Ajith Kuttannair Kumar, Erie, PA (US);
Mark Louis Nicolussi, Erie, PA (US);
Paul Robert Hokanson, Girard, PA (US);
Ajith Kuttannair Kumar, Erie, PA (US);
General Electric Company, Schenectady, NY (US);
Abstract
A high-altitude railroad locomotive adapted for more reliable operation at high altitudes, wherein the high-altitude railroad locomotive includes a semiconductor electric power control component, and wherein due to the high altitude the locomotive would be exposed to high levels of cosmic radiation tending to damage the semiconductor electric power control component is provided. The high-altitude locomotive includes electric power generation equipment, a plurality of traction motors mechanically connected to wheels supporting the high altitude locomotive and an electric power transmission system for transmitting electrical power from the electric power generation equipment to the plurality of traction motors. A DC bus is also included and electrically connected to the traction motors and a power controller for controlling the transmission of power over the DC bus, the traction motors having a second active motor volume, wherein the second active motor volume is larger than the first active motor volume to enable the DC bus voltage of the high-altitude locomotive to be reduced relative to the first DC bus voltage while generating a range of mechanical power sufficient to propel the locomotive at high altitudes, whereby the combined effects on the semiconductor electric power control component caused by the DC bus voltage of the high-altitude locomotive and by the cosmic radiation correspond to these effects on the semiconductor electric power control components of the low-altitude locomotive when operating at low altitudes to reduce the likelihood of failure of the semiconductor electric power control component of the high-altitude locomotive.