The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 11, 2006
Filed:
Jun. 27, 2002
William R. Livesay, San Diego, CA (US);
Scott M. Zimmerman, Basking Ridge, NJ (US);
William R. Livesay, San Diego, CA (US);
Scott M. Zimmerman, Basking Ridge, NJ (US);
e-Beam & Light, Inc., Carlsbad, CA (US);
Abstract
The invention provides a process for forming optical components and new optical materials utilizing electron beam irradiation. The process comprises selectively irradiating optical materials to alter their index of refraction gradient three dimensionally. With the inventive process, new optical materials can be created that have enhanced optical properties over the un-irradiated material. The invention also provides a process in which optical components can be fabricated without requiring a planar/multiple layer process, thereby simplifying the fabrication of these optical components. The inventive process uses a controlled electron beam to alter the properties of optical materials. By using the radiation of a controlled electron beam, controlled changes in the index of refraction gradient of optical materials can be obtained. Further, radiation of the electron beam can be used to create new optical materials from materials not previously believed to be suitable for optical applications. This is based not only on the refractive index change created in the material, but also upon the change in other material properties such as elimination of melt and reduced solubility in normal solvents. In these cases, the electron beam modifies and creates a new networks structure within the material, which enhances its optical properties and allows for the formation of useful physical properties necessary for the fabrication of useful devices (i.e., resulting in wholly new optical materials). It is also disclosed that the inventive process can be used to produce a spatially graded index of refraction within a material to enhance the performance of an optical waveguide which can lead to a number of novel structures.