The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 07, 2006
Filed:
Jun. 04, 2001
Henrik Clausen, Holte, DK;
Tilo Schwientek, Brønshøj, DK;
Henrik Clausen, Holte, DK;
Tilo Schwientek, Brønshøj, DK;
Glycozym ApS, Holte, DK;
Abstract
A novel gene defining a novel human UDP-GlcNAc: Gal/Gl cNAcβ 1-3GalNAc αβ1, 6GlcNAc-transferase, termed C2/4GnT, with unique enzymatic properties is disclosed. The enzymatic activity of C2/4GnT is shown to be distinct from that of previously identified enzymes of this gene family. The invention discloses isolated DNA molecules and DNA constructs encoding C2/4GnT and derivatives thereof by way of amino acid deletion, substitution or insertion exhibiting C2/4GnT activity, as well as cloning and expression vectors including such DNA, cells transfected with the vectors, and recombinant methods for providing C2/4GnT. The enzyme C2/4GnT and C2/4GnT-active derivatives thereof are disclosed, in particular soluble derivatives comprising the catalytically active domain of C2/4GnT. Further, the invention discloses methods of obtaining 1,6-N-acetyl glucosaminyl glycosylated saccharides, glycopeptides or glycoproteins by use of an enzymically active C2/4GnT protein or fusion protein thereof or by using cells stably transfected with a vector including DNA encoding an enzymatically active C2/4GnT protein as an expression system for recombinant production of such glycopeptides or glycoproteins. Also a method for the identification for the identification of DNA sequence variations in the C2/4GnT gene by isolating DNA from a patient, amplifying C2/4GnT-coding exons by PCR, and detecting the presence of DNA sequence variation are disclosed.