The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 24, 2006
Filed:
Aug. 16, 2002
Ryuzo Iga, Kanagawa, JP;
Susumu Kondo, Tokyo, JP;
Matsuyuki Ogasawara, Kanagawa, JP;
Yasuhiro Kondo, Kanagawa, JP;
Ryuzo Iga, Kanagawa, JP;
Susumu Kondo, Tokyo, JP;
Matsuyuki Ogasawara, Kanagawa, JP;
Yasuhiro Kondo, Kanagawa, JP;
Nippon Telegraph & Telephone Corporation, Tokyo, JP;
Abstract
A semiconductor optical device includes a multilayer structure and buried layers. The multilayer structure is constituted by a cladding layer having an n-type conductivity, an active region formed from an active layer or photoabsorption layer, and a cladding layer having a p-type conductivity which are successively formed on a semiconductor substrate having the first crystallographic orientation. The buried layers are made of a ruthenium-doped semi-insulating semiconductor crystal and formed on two sides of the mesa-stripe-like multilayer structure. The electrically activated ruthenium concentration in the ruthenium-doped semi-insulating semiconductor crystal grown on the growth surface having the second crystallographic orientation which is formed in the process of growing the semi-insulating semiconductor crystal is substantially equal to or higher than the electrically activated ruthenium concentration in the ruthenium-doped semi-insulating semiconductor crystal grown on the growth surface having the first crystallographic orientation wherein the second crystallographic orientation is different from the first crystallographic orientation. An integrated light source and a method of manufacturing a semiconductor optical device are also disclosed.