The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 25, 2005
Filed:
Sep. 12, 2002
Aristide Dogariu, Winter Springs, FL (US);
Gabriel Popescu, Brighton, MA (US);
Raj Rajagopalan, Gainesville, FL (US);
Aristide Dogariu, Winter Springs, FL (US);
Gabriel Popescu, Brighton, MA (US);
Raj Rajagopalan, Gainesville, FL (US);
Research Foundation of the University of Central Florida, Orlando, FL (US);
Abstract
Methods and systems for using dynamic light scattering, for investigating local rheological responses of complex fluids over a frequency range larger than that provided by standard instrumentation. A low-coherence radiation source is used with fiber optics to allow measurements of small volume spacing of up to approximately 1/10 of a picoliter. The methods and systems are based on dynamic light scattering, for investigating the local rheological response of a complex fluid over a frequency range larger than that provided by standard mechanical instrumentation. The low-coherence radiation used in a fiber optics configuration allows the measurements to be confined to a small volume around a tenth of a picoliter. The ability of the method to accurately measure both loss and storage moduli has been tested using both simple Newtonian liquids and viscoelastic, complex fluids. Monitoring liquid-gel transitions in polymer solutions has also been demonstrated. The unique capability of the technique to localize the measurement volume can be used for three-dimensional mapping of rheological properties in heterogeneous systems. Other embodiments can use open-air setups instead of optical fibers to transmit and receive the low coherence light.