The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 27, 2005
Filed:
Jan. 20, 2000
Michel F. Lévesque, Beverly Hills, CA (US);
Toomas Neuman, Santa Monica, CA (US);
Michel F. Lévesque, Beverly Hills, CA (US);
Toomas Neuman, Santa Monica, CA (US);
Cedars-Sinai Medical Center, Los Angeles, CA (US);
Abstract
Disclosed is a method of transdifferentiating an epidermal basal cell into a cell having one or more morphological, physiological and/or immunological features of a neural progenitor, neuronal, or glial cell by culturing a proliferating epidermal basal cell population derived from the skin of a mammalian subject; exposing the epidermal basal cell(s) to an antagonist of bone morphogenetic protein (BMP), such as fetuin, noggin, chordin, gremlin, or follistatin; and growing the cell(s) in the presence of at least one antisense oligonucleotide comprising a segment of a human MSX1 gene and/or a segment of a human HES1 gene, or homologous non-human counterpart of either of these. Also disclosed is a transdifferentiated cell of epidermal origin and cell cultures derived therefrom. In addition, methods of using the inventive transdifferentiated cell(s) and cell cultures to identify a novel nerve growth factor or to screen a potential chemotherapeutic agent by detecting the presence or absence of an effect, in vitro, on a morphological, physiological and/or molecular biological property of the transdifferentiated cell(s) are described, as is a method of using the transdifferentiated cell(s) and cell cultures to screen a potential chemotherapeutic agent to treat a nervous system disorder of genetic origin. A kit useful for practicing the methods is disclosed