The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 12, 2005
Filed:
Nov. 20, 2001
Matthew N. Dailey, San Diego, CA (US);
Anu K. Pathria, La Jolla, CA (US);
Mark A. Laffoon, San Diego, CA (US);
Theodore J. Crooks, La Mesa, CA (US);
Matthew N. Dailey, San Diego, CA (US);
Anu K. Pathria, La Jolla, CA (US);
Mark A. Laffoon, San Diego, CA (US);
Theodore J. Crooks, La Mesa, CA (US);
Burning Glass Technologies, LLC, San Diego, CA (US);
Abstract
The similarity between two data objects of the same type (e.g., two resumes, two job descriptions, etc.) is determined using predictive modeling. A basic assumption is that training datasets are available containing compatibility measures between objects of the first type and data objects of a second type, but that training datasets measuring similarity between objects of the first type are not. A first predictive model is trained to assess compatibility between data objects of a first type and data objects of a second type. Then, in one scenario, pairs of objects of the first type are compared for similarity by running them through the first predictive model as if one object of the pair is an object of the first type and the other object of the pair is an object of the second type. Alternatively, for each object in a set of objects of the first type, the first predictive model is used to create a respective vector of compatibility scores against a fixed set of objects of the second type; these various vectors are then used to derive measures of similarity between pairs of objects of the first type, from which a second predictive model is trained, and the second predictive model is then used to assess the similarity of pairs of objects of the first type.