The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 21, 2005
Filed:
Apr. 30, 2003
Imre Kovesdi, Rockville, MD (US);
Duncan L. Mcvey, Derwood, MD (US);
Imre Kovesdi, Rockville, MD (US);
Duncan L. McVey, Derwood, MD (US);
GenVec, Inc., Gaithersburg, MD (US);
Abstract
The inventive method of producing a eukaryotic viral vector comprises contacting a eukaryotic cell, which comprises a unique enzyme that nicks or cleaves a DNA molecule, with a recombinant phage vector, or contacting a eukaryotic cell, which does not comprise a unique enzyme that nicks or cleaves a DNA molecule, simultaneously or sequentially, in either order, with (i) a unique enzyme that nicks or cleaves a DNA molecule, and (ii) a recombinant phage vector. The recombinant phage vector comprises the DNA molecule comprising (a) a eukaryotic viral vector genome comprising a coding sequence, (b) a phage packaging site that is not contained within the eukaryotic viral vector genome, and (c) a promoter that is operably linked to the coding sequence. Alternatively, the DNA molecule is not present within the recombinant phage vector. The eukaryotic cell is contacted with the first DNA molecule and a recombinant phage vector. The first DNA molecule comprises a replication deficient eukaryotic viral vector genome comprising at least one adenoviral inverted terminal repeat and a packaging signal. The recombinant phage vector comprises a second DNA molecule and a phage packaging site, wherein the second DNA molecule complements in trans the replication deficient eukaryotic viral vector genome. The DNA molecule(s) enter the eukaryotic cell, and the unique enzyme nicks or cleaves the DNA molecule in the eukaryotic cell in at least one region not contained within the eukaryotic viral vector genome, thereby inducing the production of and ultimately producing a eukaryotic viral vector.