The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 24, 2005
Filed:
Apr. 07, 2003
Shawn P. Kelso, Albuquerque, NM (US);
Jason E. Lindler, Mountain View, CA (US);
Shawn P. Kelso, Albuquerque, NM (US);
Jason E. Lindler, Mountain View, CA (US);
CSA Engineering, Inc., Mountain View, CA (US);
Abstract
The invention disclosed is a magnetorheological fluid device offering vibration isolation and broad modulation range damping in a high load carrying and compact form. A cylindrically shaped flexure structure has a bottom cap attached to one end and a top cap attached to the other end. A piston comprising a toroidal displacement body, a central shaft, and intermediate connecting plate, attaches to the top cap. A fluid chamber surrounding and generally conforming to the shape of the toroidal displacement body, is attached to the bottom cap. Two bellows attaching between the piston connecting plate and top and bottom portions of the fluid chamber complete an enclosed volume around the toroidal displacement body and allow frictionless motion of the toroidal displacement body relative to the fluid chamber. Electromagnetic coils placed within the inner and outer radius walls of the fluid chamber effect a magnetic field across the outer radius gap and inner radius gap between the toroidal displacement body and fluid chamber. Longitudinal deflection of the cylindrical flexure structure effects motion of the top cap relative to the bottom cap which in turn effects longitudinal motion of the toroidal displacement body within the fluid chamber. Magnetorheological fluid is forced from the top of the toroidal displacement body to the bottom, and vice-versa, across the inner radius and outer radius gaps between the fluid chamber and the inner radius of the toroidal displacement body. Static payload loads are supported with a high-strength, linear-elastic load path while base motion dynamic vibration loads are substantially isolated and damped without stiction effects.