The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 03, 2005

Filed:

May. 14, 2002
Applicants:

Waltraud M. Kriven, Champaign, IL (US);

Sang-jin Lee, Chonnam, KR;

Inventors:

Waltraud M. Kriven, Champaign, IL (US);

Sang-Jin Lee, Chonnam, KR;

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
B32B018/00 ;
U.S. Cl.
CPC ...
Abstract

In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (AlO), mullite (3AlO.2SiO), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAlSiO) and nickel aluminate (NiAlO). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.


Find Patent Forward Citations

Loading…