The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 19, 2005
Filed:
Apr. 15, 2003
Claire F. Gmachl, New Providence, NJ (US);
Evgueni E. Narimanov, Princeton, NJ (US);
Claire F. Gmachl, New Providence, NJ (US);
Evgueni E. Narimanov, Princeton, NJ (US);
Lucent Technologies Inc., Murray Hill, NJ (US);
Abstract
A compact optical resonator that exhibits long TOPLs is fabricated by (a) selecting a 3-dimensional (3D) reflective, essentially closed surface such that the paths of optical rays that reflect from the interior of the surface include chaotic, open paths; (b) determining the phase-space of the reflection points of the rays; (c) within the phase-space identifying at least one forbidden zone where there are no such reflection points and at least one allowed zone where there is a multiplicity of such reflection points; (d) forming the surface inside a rigid body; and (e) forming at least one physical feature that communicates with the interior of the resonator and is located in a region of the surface that is determined by the positions of the forbidden zones, the allowed zones, or both. In a preferred embodiment physical features such as gas ports are located in regions of the surface that, in phase space, correspond to forbidden zones (so that the circulating optical rays cannot escape via the gas ports). In contrast, physical features such as optical ports are located in regions of the surface that, in phase space, correspond to allowed zones (so that the circulating rays can reach a very long TOPL and then exit from the resonator). In a preferred embodiment, the 3D surface is formed by revolution of a 2D surface about a predetermined axis. Illustratively, the 2D surface has the shape of a quadrupole. Other aspherical shapes of the resonator surface can also be utilized. Application of the resonator to trace-gas sensing systems and to optical amplifiers is also described.