The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 11, 2005
Filed:
May. 19, 2003
Craig A. Keller, Fremont, CA (US);
Fiona L. Plows, Palo Alto, CA (US);
Craig A. Keller, Fremont, CA (US);
Fiona L. Plows, Palo Alto, CA (US);
Ciphergen Biosystems, Inc., Fremont, CA (US);
Abstract
An improved electron multiplier bias network that limits the response of the multiplier when the multiplier is faced with very large input signals, but then permits the multiplier to recover quickly following the large input signal. In one aspect, this invention provides an electron multiplier, having a cathode that emits electrons in response to receiving a particle, wherein the particle is one of a charged particle, a neutral particle, or a photon; an ordered chain of dynodes wherein each dynode receives electrons from a preceding dynode and emits a larger number of electrons to be received by the next dynode in the chain, wherein the first dynode of the ordered chain of dynodes receives electrons emitted by the cathode; an anode that collects the electrons emitted by the last dynode of the ordered chain of dynodes; a biasing system that biases each dynode of the ordered chain of dynodes to a specific potential; a set of charge reservoirs, wherein each charge reservoir of the set of charge reservoirs is connected with one of the dynodes of the ordered chain of dynodes; and an isolating element placed between one of the dynodes and its corresponding charge reservoir, where the isolating element is configured to control the response of the electron multiplier when the multiplier receives a large input signal, so as to permit the multiplier to enter into and exit from saturation in a controlled and rapid manner.