The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 04, 2005
Filed:
Aug. 02, 2002
Kurt E. Williams, Seaford, NY (US);
Hariharakeshara Hegde, Little Neck, NY (US);
Kurt E. Williams, Seaford, NY (US);
Hariharakeshara Hegde, Little Neck, NY (US);
Veeco Instruments, Inc., Woodbury, NY (US);
Abstract
A multi-step etching process for a lead overlay structure such as a thin-film magnetic head structure using secondary ion mass spectroscopy (SIMS) whereby high selectivity of a lead material or other high conductivity metal layer is realized versus that of a metallic mask material and stopping layer. The first step includes patterning the mask layer using IBE or RIE. Advantageously, a photoresist layer is present over a portion of the mask layer and is left in place to be removed in a subsequent step. The second step includes etching the high conductivity metal layer using CAIBE or RIBE with an inert/reactive gas mixture and using SIMS to detect when the stopping layer is reached. The gas mixture comprises an inert gas and a reactive gas that is either oxygen, nitrogen, or a combination of oxygen and nitrogen, whereby the ionized gas mixture contains ions that increase the sensitivity of the SIMS yield of the stopping layer such that the end point of the high conductivity metal layer is detected and etching can then be stopped at the appropriate time. The chemistry of the second etching step is effective to also remove the photoresist at a high etch rate. The third step includes etching the stopping layer with IBE using an inert gas, advantageously with a high angle of about 40-70°. The third step may also be effective to etch debris redeposited on the sidewalls of the structure, and to remove all or a portion of the remaining mask layer.