The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 14, 2004

Filed:

Feb. 12, 2001
Applicant:
Inventor:

Kou Ishizuka, Saitama, JP;

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01J 3/14 ;
U.S. Cl.
CPC ...
H01J 3/14 ;
Abstract

A light beam emitted from a semiconductor-laser light source is projected onto a diffraction-grating scale after passing through a collimator lens, a beam splitter and a central portion of an annular reflection grating. Two diffracted light beams reflected from the diffraction-grating scale are projected onto the annular reflection grating. The annular reflection grating diffracts the light beams projected onto all portions thereon to a substantially original direction to be projected onto and diffracted from the same position on the diffraction-grating scale. The diffracted light beams are superposed and the resultant light beam is returned to the beam splitter. The light beam is guided by the beam splitter in a direction different from the semiconductor-laser light source, and is detected by a photosensor as an interference light beam. Even if the oscillation wavelength of the semiconductor-laser light source changes, for example, due to a change in the temperature environment, to change the diffraction angles of the diffracted light beams, the light beams are diffracted with original diffraction angles by the annular reflection grating, the position of rediffraction by the diffraction-grating scale and the state of emitted light beams are invariable. Hence, the state of interference is stable.


Find Patent Forward Citations

Loading…