The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 09, 2004
Filed:
Nov. 15, 2002
Lillian M. Kellogg, Webster, NY (US);
Joe E. Maskasky, Rochester, NY (US);
Dale E. Hamilton, Rochester, NY (US);
Eastman Kodak Company, Rochester, NY (US);
Abstract
A method of electronic processing of an imagewise exposed dispersed particle photoconductive material imaging element employing pulsed radiation and radio frequency photoconductivity apparatus having a sample capacitor with a gap is described, comprising the steps of: a) placing the imagewise exposed photoconductive material imaging element in an electromagnetic field adjacent the sample capacitor; b) scanning the element through the gap in the sample capacitor with a pulsed, focused beam of radiation; c) directly measuring the photoelectron response of the element and recording the resulting signals from the radio frequency photoconductivity apparatus; and d) advancing the element past the capacitor and repeating steps b) and c); wherein the photoconductive material imaging element comprises photoconductive particles which contain deep electron trapping agents which in an unfilled state effectively decrease the photoconductivity of the photoconductor particles, and wherein imagewise exposure of the photoconductive particles of the imaging element fill deep electron traps and increase the photoconductivity of exposed particles relative to unexposed particles, such that increased imagewise exposure in the photoconductive material results in an increased photoconductivity signal in step c).