The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 31, 2004
Filed:
Jun. 09, 2000
Ping-Sheng Tseng, Sunnyvale, CA (US);
Axis Systems, Inc., Sunnyvale, CA (US);
Abstract
An emulation system includes a clock generation logic for generating multiple asynchronous clocks, where each generated clock's relative phase relationship with respect to all other generated clocks is strictly controlled to speed up the emulation logic evaluation. Unlike statically designed emulator systems known in the prior art, the speed of the logic evaluation in the emulator need not be slowed down to the worst possible evaluation time since the clocking is generated internally in the emulator and carefully controlled. The emulation system does not concern itself with the absolute time duration of each clock, because only the phase relationship among the multiple asynchronous clocks is important. By retaining the phase relationship (and the initial values) among the multiple asynchronous clocks, the speed of the logic evaluation in the emulator can be increased. The RCC clock generation logic comprises a clock generation scheduler and a set of clock generation slices, where each clock generation slice generates a clock. The clock generation scheduler compares each clock's next toggle point from the current time, toggles the clock associated with the winning next toggle point, determines the new current time, updates the next toggle point information for all of the clock generation slices, and performs the comparison again in the next evaluation cycle. In the update phase, the winning slice updates its register with a new next toggle point, while the losing slices merely updates their respective registers by adjusting for the new current time.