The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 10, 2004
Filed:
Aug. 01, 2001
William Oscar Janky, Goode, VA (US);
Vincent Paul Massaro, Syracuse, NY (US);
Thomas Alexander Savage, Lynchburg, VA (US);
M/A-Com Private Radio Systems, Inc., Lynchburg, VA (US);
Abstract
Method processor and processor-readable medium for reducing the level of feedback-induced noise in the output signal from an audio automatic gain control circuit are provided. The method allows for receiving a stream of pulses comprising an input signal to the automatic gain control circuit. The method further allows for receiving estimates of respective high and low frequency energy components of the input signal. The respective high and low frequency components are averaged, e.g., over a respective sliding window. An energy scalar is calculated based on the ratio of a predefined target energy level over a combined value of the high and low frequency components. A relating action allows to compare the target energy level to the combined value of the high and low frequency components. Based on the comparison results, the calculated energy scalar is limited to within the two limit values. A subsequent relating action allows to compare the values of the averages of the high and low frequency components to one another. If the value of the high frequency average exceeds the value of the low frequency average, the energy scalar is reduced to a value sufficiently low to suppress the presence of feedback-induced noise in the input signal of the circuit, and generate an output signal with a corresponding low level of feedback-induced noise. If the value of the low frequency average exceeds the value of the high frequency average, the energy scalar is applied to the input signal to generate an output signal scaled within the two limit values.