The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jul. 06, 2004

Filed:

Jun. 11, 2002
Applicant:
Inventors:

Zakaryae Fathi, Raleigh, NC (US);

William L. Geisler, Chapel Hill, NC (US);

Joseph M. Wander, Chapel Hill, NC (US);

Iftikhar Ahmad, Raleigh, NC (US);

Richard S. Garard, Chapel Hill, NC (US);

Assignee:

Lambda Technologies, Morrisville, NC (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G02B 6/255 ;
U.S. Cl.
CPC ...
G02B 6/255 ;
Abstract

In-situ and post-cure methods of joining optical fibers and optoelectronic components are provided. An in situ method of joining an optical fiber to an optoelectronic component includes positioning an optical fiber and optoelectronic component in adjacent relationship such that light signals can pass therebetween, applying a curable resin having adhesive properties to an interface of the optical fiber and the optoelectronic component, aligning the optical fiber and optoelectronic component relative to each other such that signal strength of light signals passing between the optical fiber and the optoelectronic component is substantially maximized, and irradiating the interface with non-ionizing radiation in RF/microwave energy to rapidly cure the resin. A post-cure method of joining an optical fiber to an optoelectronic component includes positioning an optical fiber and optoelectronic component in adjacent relationship such that light signals can pass therebetween, applying a curable resin having adhesive properties to an interface of the optical fiber and the optoelectronic component, aligning the optical fiber and optoelectronic component relative to each other such that the signal strength of light signals passing between the optical fiber and the optoelectronic component is substantially maximized, and irradiating the interface with microwave energy to partially cure the resin. The joined components are then transferred to a curing oven to fully cure the adhesive resin.


Find Patent Forward Citations

Loading…