The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 15, 2004
Filed:
Nov. 14, 2000
Elbrus International Limited, George Town Grand Cayman, KY;
Abstract
An SRT division unit for performing a novel SRT division algorithm is presented. The novel SRT division algorithm comprises a method for performing SRT division using a radix r. As one skilled in the art will appreciate, the radix r dictates the number of quotient-bits k generated during a single iteration. The relationship between radix r and the number of quotient-bits k generated in a single iteration is r=2 . The number of iterations needed to determine all quotient-digits is N, such that N=54/k for a 64 bit floating point value. In accordance with one embodiment of the present invention, the SRT division unit generates a scaling factor M, which comprises scaling sub-factors M1 and M2 according to the relationship M=r*M1+M2. Next, the division unit generates a scaled divisor Y by multiplying a divisor DR by scaling factor M, such that said scaled divisor Y=DR*M=r(DR*M1)+DR*M2. In addition, the division unit generates partial remainder values w[00] and w[0] by muliplying a dividend DD by scaling sub-factor M1 and scaling factor M, respectively. Partial remainder value w[00]=DD*M1, and partial remainder value w[0]=DD*M=r(DD*M1)+DD*M2. Scaled divisor Y and partial remainders w[0] and w[00] then are used to generate quotient-digits and additional partial remainders. Accordingly, the division unit performs iterations j which generate quotient-digits according to the formula q[j]=SEL(r *w [j−2], q[j−1]). Also, the iterations generate additional partial remainders w[j] according to the formula w[j]=rw[j−1]−q[j−1]*Y. N iterations are performed, generating all quotient-digits for the division operation.