The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 15, 2004

Filed:

Aug. 24, 2001
Applicant:
Inventors:

Sunyu Su, South San Francisco, CA (US);

Leon Kaufman, San Francisco, CA (US);

Mitsuaki Arakawa, Hillsborough, CA (US);

Assignee:

Toshiba America MRI, Inc., Tustin, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
A61B 5/055 ;
U.S. Cl.
CPC ...
A61B 5/055 ;
Abstract

An inherently de-coupled sandwiched solenoidal array coil (SSAC) is disclosed for use in receiving nuclear magnetic resonance (NMR) radio frequency (RF) signals in both horizontal and vertical-field magnetic resonance imaging (MRI) systems. In its most basic configuration, the SSAC comprises two coaxial RF receive coils. The first coil of the array has two solenoidal (or loop) sections that are separated from one another along a common axis. The two sections are electrically connected in series but the conductors in each section are wound in opposite directions so that a current through the coil sets up a magnetic field of opposite polarity in each section. The second coil of the SSAC is disposed (“sandwiched”) between the two separated solenoidal sections of the first coil in a region where the combined opposing magnetic fields cancel to become a null. Due to the winding arrangement and geometrical symmetry, the receive coils of the array become electromagnetically “de-coupled” from one another while still maintaining their sensitivity toward receiving NMR signals. The multiple coil array arrangement also allows for selecting between a larger or smaller field-of-view (FOV) to avoid image fold-over problems without time penalty in image data acquisition. Alternative embodiments are disclosed which include unequal constituent coil diameters, unequal constituent coil windings, non-coaxial coil configurations, a three-coil quadrature detection (QD) SSAC arrangement, multiple SSAC arrangements, and optimized SSAC configurations for breast imaging in both horizontal and vertical-field MRI systems.


Find Patent Forward Citations

Loading…