The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 08, 2004

Filed:

Dec. 16, 1999
Applicant:
Inventors:

Bradley Paul Barber, Chatham, NJ (US);

Linus Albert Fetter, Morganville, NJ (US);

Assignee:

Agere Systems, Inc., Allentown, PA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C23C 1/434 ;
U.S. Cl.
CPC ...
C23C 1/434 ;
Abstract

The invention embodies a method and apparatus for controlling the thickness of a dielectric film formed by physical vapor deposition (PVD). The method compensates for the continuously varying electrical load conditions inherent in dielectric deposition via PVD. The method can be implemented through three different stages. Initially, the system power supply can be configured to operate in either constant current or constant voltage mode, herein referred to as constant supply parameter mode. Next, a gas composition which minimizes excursions in system impedance under these conditions is empirically determined. Finally, a test deposition can be performed using the constant parameter power supply mode and the gas mixture. This deposition is performed while tracking and summing the energy delivered to the system. The thickness of the deposited film is subsequently measured, and from these data a thickness-per-unit-energy relationship is determined. Depositions of predictable film thickness are then reproducibly performed under these established conditions. In practice, a given deposition is terminated at a value of total energy as determined by the established thickness per unit energy value and the required film thickness. The method is much more reliable than the current art technique of deposition at constant power for a fixed time.


Find Patent Forward Citations

Loading…