The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 18, 2004
Filed:
Nov. 10, 1997
Philippe Cros, Lyons, FR;
Abdelhamid Elaissari, Lyons, FR;
Claude Mabilat, Rillieux la Pape, FR;
Christian Pichot, Corbas, FR;
Marc Rodrigue, Dardilly, FR;
Lise Santoro, Sainte-Foy-les-Lyons, FR;
Bio Merieux, Marcy l′Etoille, FR;
Abstract
A method for aqueous phase nucleic acid isolation from a sample, comprising a step of nucleic acid adsorption on a particulate substrate, is disclosed. The method comprises an adsorption reagent preparation step (a) that includes a sol consisting of a aqueous continuous phase and a dispersed particulate substrate phase including a functionalized particulate polymer prepared by polymerizing (1) a first water-soluble acrylamide or acrylamide derivative monomer, (2) at least one cross-linking agent and (3) at least one second water-soluble, cationic and functional monomer, said polymer having a predetermined lower critical solubility temperature (LCST) of 25-45° C.; a contact step (b) wherein the adsorption reagent is contacted with the sample containing the nucleic acid; an adsorption step (c) wherein, to carry out the contact step (b), at least one parameter is selected for the reaction medium, said parameters being a pH no higher than 7, an ionic strength no higher than 10 M, and a temperature lower than the polymer LCST; a separation step (d) wherein the dispersed phase is separated from the continuous phase, optionally after it has been observed that adsorption has occurred; and a desorption step (e) wherein the nucleic acid is desorbed from the particulate substrate by increasing the ionic strength until an ionic strength higher than 10 M is achieved.