The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 09, 2004

Filed:

Mar. 24, 1999
Applicant:
Inventors:

Paolo Narvaez, Chambridge, MA (US);

Kai-Yeung Siu, Charlestown, MA (US);

Hong-Yi Tzeng, Tinton Falls, NJ (US);

Assignee:

Lucent Technologies Inc., Murray Hill, NJ (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H04L 1/228 ;
U.S. Cl.
CPC ...
H04L 1/228 ;
Abstract

A dynamic shortest path tree (SPT) algorithm for a router determines a new SPT for a root node in response to a link-state or other network topology change. The dynamic SPT algorithm determines the new SPT as an optimization problem in a linear programming framework based in an existing SPT in the router. The dynamic SPT algorithm emulates maximum decrement of a ball and string model by iteratively selecting nodes of the existing SPT for consideration and update of parent node, child nodes, and distance attributes based on the maximum decrement. For the maximum decrement, a node in the existing SPT is selected by each iteration based on the greatest potential decrease (or least increase) in its distance attribute. The ball and string model that may be employed for the dynamic SPT algorithm represents a network of nodes and links with a ball representing a node and a string representing a link or edge. The length of a string is defined by its link's weight. The set of strings connecting the balls defines a path between the root node and a particular node. The shortest path is the path defined by the strings from a root node to a particular node that are tight. For the dynamic SPT algorithm, an increase (or decrease) in an edge weight in an existing SPT corresponds to a lengthening (or shortening) of a string. By sequentially pulling balls away in a single direction from the ball of the root node, the new SPT becomes defined by the balls and tight strings.


Find Patent Forward Citations

Loading…