The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 09, 2004
Filed:
Oct. 14, 1998
Carl F. Knopp, San Mateo, CA (US);
Jerzy Orkiszewski, Livermore, CA (US);
Jan Wysopal, Livermore, CA (US);
Hanna J. Hoffman, Palo Alto, CA (US);
Visx, Inc., Santa Clara, CA (US);
Abstract
A method, apparatus and system for a transverse tracker is described that can greatly improve the accuracy, speed, range, reliability, versatility, safety, and efficacy of interventions such as laser microsurgery, particularly ophthalmic surgery, and industrial micromachining. The instrument and system disclosed are applicable to those situations wherein the positioning accuracy of laser lesions is critical, and/or whenever precise operations on a target or series of targets subject to random movement during a procedure are to be effected. The present invention provides means for stabilizing the motion of targets in a plane perpendicular to the axial direction, thus allowing an imaging system, diagnostics illumination, and/or laser beam to maintain a lock on the target area, regardless of its movement. The invention also provides means for recording eye movements in real time and in which data can be stored and manipulated for the purpose of compensating for lateral target motion by either hardware or software means. Unique attributes provided in the tracking system include means for (1) sensing contrast in recognizable large scale boundaries such as the change between the cornea/sclera interface (limbus), thereby to determine the absolute location and orientation of these boundaries, all without having to resort to digital sampling techniques and (2) dual mode operation of an electronic control system compatible with all analog technologies, thereby substantially increasing the speed of operations over other, comparable digital method. The tracking system of the invention is at least comprised of illumination sources, imaging optics, a sensor such as a position-sensitive detector, a movable optical element such as a mirror, a two-dimensional logic board, and a dedicated microprocessor, including appropriate signal processing firmware and software. Additional optics can be incorporated to provide interface with other assemblies such as depth tracking, target viewing and/or laser surgery subsystems. The system of the invention affords considerable flexibility in selecting particular components such as the illuminators, detectors and servo devices, which, in turn, allows broad application of this system to tracking tasks in diverse medical surgical, diagnostic, and industrial settings.