The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 02, 2004
Filed:
Nov. 06, 2001
Naveen Chopra, Oakville, CA;
Steven Georges, Guelph, CA;
Peter M. Kazmaier, Mississauga, CA;
Sammy Y.H. Ro, Mississauga, CA;
Man C. Tam, Mississauga, CA;
Francisco E. Torres, San Jose, CA (US);
Sophie V. Vandebroek, Penfield, NY (US);
Xerox Corporation, Stamford, CT (US);
Abstract
A dynamic reimageable document or electric paper can be formed from ordinary substrates such as paper, transparencies or fabric by printing of microencapsulated Gyricon beads onto one or more discrete surface areas of the substrate. The substrate can include both fixed print regions formed by conventional fixed ink processes and dynamic reimageable regions formed by the Gyricon beads. The Gyricon beads are preferably bichromal and of contrasting colors, such as black/white so as to be changeable to display two states by selective application of electromagnetic force to the beads. By providing bichromal beads in differing color combinations, such as red/white and black/white, a multi-colored document can be achieved in which various fields of the document, representing text, images or graphics, may be in differing colors. Moreover, operations to perform both imaging or erasure can act on the discrete reimageable regions so that the versatility of the electric paper can be enhanced. The Gyricon beads may be dispersed in a solution to form a liquid Gyricon toner that can be directly marked, such as by a jet nozzle, into a desired pattern on the substrate.