The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Feb. 10, 2004

Filed:

Jan. 02, 2001
Applicant:
Inventors:

Alexander Ksendzov, La Crescenta, CA (US);

Randy Dean May, Montrose, CA (US);

Assignee:

SpectraSensors, Inc., Altadena, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01S 3/10 ;
U.S. Cl.
CPC ...
H01S 3/10 ;
Abstract

A semiconductor laser is provided having a cavity including a gain chip, a Mach-Zehnder wide tuning port, and a ring resonator mirror. Optical signals generated by the gain chip propagate through the Mach-Zehnder wide tuning port and into the ring resonator mirror where the optical signals are reflected back through the Mach-Zehnder wide tuning port to the gain chip. The ring resonator is configured to reflect only those optical signals back into the laser cavity having wavelengths within a set of sharp peaks and the laser cavity therefore can resonate only within one of the sharp peaks. The ring resonator mirror is heated to adjust its dimensions so as to maintain one of the sharp peaks at a selected emission wavelength. As optical signals reflected from the ring resonator pass through the Mach-Zehnder wide tuning port, the signals are split between two channels of differing lengths resulting in optical interference. The optical interference limits the ability of the laser cavity to resonate at wavelengths other than near the center of a single broad peak determined by the relative lengths of the two channels. The Mach-Zehnder wide tuning port is heated to vary the relative lengths of the two channels so as to maintain the single broad peak at the selected transmission wavelength. In this manner, the laser cavity is controlled to resonate substantially only at the selected wavelength. Resonance at the other sharp resonance peaks permitted by the ring resonator is significantly reduced, thereby significantly reducing transmission sidebands generated by the laser.


Find Patent Forward Citations

Loading…