The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Feb. 10, 2004

Filed:

Mar. 30, 2001
Applicant:
Inventors:

Jean T. Jacob, New Orleans, LA (US);

Jingjing Bi, River Ridge, LA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
A61F 2/14 ;
U.S. Cl.
CPC ...
A61F 2/14 ;
Abstract

A synthetic device for cornea augmentation and replacement that increases corneal epithelium cell adhesion and migration. Using tethered extracellular matrix proteins (ECMPs), corneal growth factors, and other ligand-specific corneal enhancer species (e.g., laminin, fibronectin, substance P, fibronectin adhesion-promoting peptide sequence, FAP, and insulin-like growth factor-1 [IGF-1]) on the polymeric surface of an artificial cornea, the epithelial cell response can be significantly enhanced. Other proteins of interest include, but are not limited to, k-laminin, talin, integrin, kalinin, fibroblast growth factor (FGF), and TGF-&bgr;. By tethering a combination of corneal enhancer molecules, a more natural environment can be created. Additionally, the surface topography of the artificial surface, preferably a hydrogel, can be micro-molded, etched, lathed, or engineered prior to tethering the corneal enhancer molecules to resemble the natural underlying surface of the corneal epithelial cells, Bowman's layer. This system allows epithelial cells to spread and attach faster than existing systems, as well as providing an underlying textured surface that allows the cells to resist the shear force induced in vivo by the blinking of the eyelid. Moreover, the resulting epithelial layer closely resembles a natural epithelial layer. The material can be used, for example, as a corneal onlay, an epikeratophakia lenticule, an intracorneal augmentation device, or an artificial cornea.


Find Patent Forward Citations

Loading…