The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 23, 2003
Filed:
May. 27, 1999
Burton B. Lo, San Francisco, CA (US);
Krishna Uppunda, Santa Clara, CA (US);
Anthony L. Pan, Fremont, CA (US);
3Com Corporation, Santa Clara, CA (US);
Abstract
A scaleable priority arbiter for arbitrating between multiple FIFO entry points of a network interface card (NIC). The circuit provides a separate FIFO entry point circuit within the NIC for each data packet priority type. Exemplary priority types, from highest to lowest, include isochronous, priority , priority , . . . , priority n. A separate set of FIFO entry points are provided for NIC transmitting (Tx) and for NIC receiving (Rx). For each of the Tx FIFO entry points, a single Tx entry point register is seen by the processor and multiple downlist pointers are also maintained. The Tx entry point registers all feed a scaleable priority arbiter which selects the next message for transmission. The scaleable priority arbiter is made of scaleable circuit units that contain a sequential element controlling a multiplexer. The multiplexer selects between two inputs, a first input is dedicated to data packets of the priority type corresponding to the circuit stage and the other input comes from the lower priority chain. In one embodiment, timers regulate the transmission of isochronous packets. The arbiter transmits the isochronous packet, if any, with the timer and otherwise allows the next stage a transmit turn. The next stage checks if a priority packet is present and if a priority packet was not sent the last time its turn was reached. If yes, the priority packet is sent, if not, then the above decision is repeated with respect to the next lower priority circuit stage. Priority arbitration improves quality of service performance.