The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 04, 2003
Filed:
Mar. 30, 2001
Antonije M. Radojevic, Mamaroneck, NY (US);
Richard M. Osgood, Jr., Chappaqua, NY (US);
Miguel Levy, Chassell, MI (US);
The Trustees of Columbia University in the City of New York, New York, NY (US);
Abstract
A method for fabricating ultra-thin single-crystal metal oxide wave retarder plates, such as a zeroth-order X-cut single-crystal LiNbO half-wave plate, comprises ion implanting a bulk birefringent metal oxide crystal at normal incidence through a planar major surface thereof to form a damage layer at a predetermined distance d below the planar major surface, and detaching a single-crystal wave retarder plate from the bulk crystal by either chemically etching away the damage layer or by subjecting the bulk crystal having the damage layer to a rapid temperature increase to effect thermally induced snap-off detachment of the wave retarder plate. The detached wave retarder plate has a predetermined thickness d dependent on the ion implantation energy. A half-wave plate fabricated in accordance with this method may be used in conjunction with an optical waveguide section to form a TE-TM polarization mode converter by mounting the half-wave plate in a groove in the wageguide section perpendicular to the direction of wave propagation therein, bonding the half-wave plate to the back-end facet of the waveguide section or bonding the half-wave plate to the front-end facet of the waveguide section. In each case the normal mode axes of the half-wave plate is at 45° with respect to the direction of the electric field vector of the TE or TM mode of propagation in the waveguide section.