The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 23, 2003
Filed:
Apr. 20, 2000
Dmitri V. Kuksenkov, Painted Post, NY (US);
John D. Minelly, Painted Post, NY (US);
Luis A. Zenteno, Painted Post, NY (US);
Corning Incorporated, Corning, NY (US);
Abstract
A semiconductor laser having an external cavity including a single-mode optical fiber. A Bragg grating is written onto the fiber which defines the end of the optical cavity, selects the lasing wavelength, and discriminates against the lasing of higher-order transverse modes in the multi-mode gain region. In one embodiment, the semiconductor laser includes an optically active vertical-cavity semiconductor stack similar to a vertical-cavity surface emitting laser. The stack is optically pumped either from the front or the back over a relatively large area such a multi-mode beam is output. Optics couple the multi-mode beam to the single-mode input of the fiber. A partially transmissive mirror of reflectivity between 25 and 40% may be placed on the output surface of the semiconductor stack to form a coupled-cavity laser. A plurality of laser diodes can be angularly positioned around the area of the semiconductor stack being pumped to increase the total pump power. In a second embodiment, the semiconductor laser includes a broad-area diode laser/amplifier. Anamorphic optics couple the asymmetric output of the optical diode to the single-mode fiber. In a third embodiment, a laser diode pumps a solid-state rod composed of an optically active material such as YAG. One end of the rod is coated with a mirror, and the other end is optically coupled to the single-mode fiber having the Bragg grating written thereon. The invention can be advantageously used to optically pump an erbium-doped fiber amplifier.