The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 19, 2003
Filed:
Sep. 20, 2001
Carvel E. Holton, Blacksburg, VA (US);
Virginia Tech Intellectual Properties, Blacksburg, VA (US);
Abstract
A method of generating in-quadrature signals is disclosed. The method comprises phase shifting a Doppler frequency-shifted signal; phase shifting a local oscillator signal; mixing the phase shifted Doppler frequency-shifted signal and the phase-shifted local oscillator signal generating thereby a signal which includes the phase-shifted Doppler frequency-shifted signal and a further phase-shifted local oscillator signal; and mixing the unphase-shifted Doppler frequency-shifted signal and the unphase-shifted local oscillator signal generating thereby a signal which includes the unphase-shifted local oscillator signal and a further phase-shifted Doppler frequency-shifted signal. A method of determining the velocity of an object is also disclosed. The method comprises receiving a Doppler frequency-shifted signal reflected or backscattered from the object; generating a local oscillator signal; based upon the received Doppler frequency-shifted signal and the local oscillator signal, generating an in-phase signal; based upon the received Doppler frequency-shifted signal and the local oscillator signal generating an in-quadrature signal; summing the in-phase signal and the in-quadrature signal; and transforming the summation of the in-phase signal and the in-quadrature signal. A lidar is disclosed comprising an optical system for transmitting an output signal to an object and receiving thereby a Doppler frequency-shifted signal reflected or backscattered from the object; a signal mixing assembly receptive of the Doppler frequency-shifted signal and a local oscillator signal generating thereby an in-phase signal and an in-quadrature signal; and a signal transformer for transforming the in-phase signal and an in-quadrature signals. A signal mixing system is disclosed comprising an array of signal couplers receptive of a Doppler frequency-shifted signal and a local oscillator signal generating thereby an in-phase signal which includes the unphase-shifted local oscillator signal and a phase-shifted Doppler frequency-shifted signal and an in-quadrature signal which includes the phase-shifted Doppler frequency-shifted signal and a further phase-shifted local oscillator signal; and a plurality of signal detectors receptive of the in-phase and in-quadrature signals.