The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jul. 15, 2003

Filed:

Sep. 17, 2001
Applicant:
Inventors:

Boris Kesil, San Jose, CA (US);

David Margulis, Campbell, CA (US);

Elik Gershenzon, Daly City, CA (US);

Assignee:

Other;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01B 7/10 ; G01R 3/312 ; G01N 2/772 ;
U.S. Cl.
CPC ...
G01B 7/10 ; G01R 3/312 ; G01N 2/772 ;
Abstract

The invention relates to an apparatus for measuring thickness and deviations from the thickness of thin conductive coatings on various substrates, e.g., metal coating films in semiconductor wafer or hard drive disks. The thickness films may be as small as fractions of microns. The apparatus consists of an inductive sensor and a proximity sensor, which are rigidly interconnected though a piezo-actuator used for displacements of the inductive sensor with respect to the surface of the object being measured. Based on the results of the operation of the proximity sensor, the inductive sensor is maintained at a constant distance from the controlled surface. Variations in the thickness of the coating film and in the distance between the inductive sensor and the coating film change the current in the inductive coil of the sensor. The inductive sensor is calibrated so that, for a predetermined object with a predetermined metal coating and thickness of the coating, variations in the amplitude of the inductive sensor current reflect fluctuations in the thickness of the coating. The distinguishing feature of the invention resides in the actuating mechanism of microdisplacements and in the measurement and control units that realize interconnection between the proximity sensor and the inductive sensor via the actuating mechanism. The actuating mechanism is a piezo actuator. Measurement of the film thickness in the submicron range becomes possible due to highly accurate dynamic stabilization of the aforementioned distance between the inductive sensor and the object. According to one embodiment, the distance is controlled optically with the use of a miniature interferometer, which is rigidly connected to the inductive sensor. According to another embodiment, the distance is controlled with the use of a capacitance sensor, which is also rigidly connected to the inductive sensor.


Find Patent Forward Citations

Loading…