The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jul. 08, 2003

Filed:

May. 26, 2000
Applicant:
Inventors:

Kazuhide Tanaka, Hitachi, JP;

Michiya Okada, Mito, JP;

Keiji Fukushima, Hitachi, JP;

Tsuyoshi Wakuda, Hitachi, JP;

Assignee:

Hitachi, Ltd., Tokyo, JP;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01B 1/200 ; H01L 3/924 ;
U.S. Cl.
CPC ...
H01B 1/200 ; H01L 3/924 ;
Abstract

The cross section of a wire is round and is composed of several units, each consisting of tape-like superconductors laminated in an approximately rhombic shape, which are arranged such that they form a hexagon as a whole. Oxide superconducting tape wires each consisting of a plurality of oxide superconducting filaments are arranged in rotational symmetry to a core. The oxide superconducting filaments have the cross section such that the average thickness is 3 to 20 &mgr;m and the average aspect ratio is larger than 2 and smaller than 10. A step of arranging the oxide superconducting tape-like wires in rotational symmetry is accomplished when the multi-core tape-like wires are packed in a third metal pipe which becomes a metal sheath later. Since the multi-core tape wires having oxide superconducting filaments are arranged in rotational symmetry, the oxide superconductor in the oxide superconducting filaments permits its c axis to orient in various directions. This makes it possible to prevent the critical current from decreasing irrespective of the direction in which the magnetic field is applied and to increase the critical current density (Jc) because the oxide superconducting filament has an optimal size. The oxide superconductor should be a bismuth-based oxide superconductor, preferably be the one which has a composition of Bi Sr Ca Cu O .


Find Patent Forward Citations

Loading…