The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 03, 2003

Filed:

Oct. 10, 2001
Applicant:
Inventors:

Yuri A. Zakharenkov, Tracy, CA (US);

Gregory S. Maurer, San Ramon, CA (US);

James E. Leight, San Ramon, CA (US);

Assignee:

Lightica, Inc., San Ramon, CA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G02F 1/365 ;
U.S. Cl.
CPC ...
G02F 1/365 ;
Abstract

An optical device for serializing data signals in a plurality of parallel channels is disclosed, including: (a) a plurality of waveguides adapted to conduct light signals of a predetermined wavelength; and (b) a nonlinear optical element having a refractive index and defining an optical path thereon adapted and configured to conduct a control light pulse along the optical path, wherein a portion of each of the plurality of waveguides is adjacent to or in contact with the nonlinear optical element at a different portion along the optical path; wherein the refractive index along the optical path is substantially altered where the control pulse is located such that the relative phase of the light signals of the predetermined wavelength is altered only where the signal is substantially coincident with the control pulse. The refractive index along the optical path in the nonlinear optical element is such that the light signals of the predetermined frequency in any one of the waveguides substantially cannot propagate past the point where the waveguide is adjacent to or in contact with the nonlinear optical element when the control pulse is not adjacent the point, and can substantially freely propagate through the point when the control pulse is adjacent the point. The device further includes a single source of the control pulse, wherein the light path is adapted and configured to conduct the control pulse to all portions of the light path where the waveguides are adjacent to or in contact with the nonlinear optical element, whereby a single control pulse can alter the relative phases of all light signals substantially coincident with the control pulse propagating along the optical path.


Find Patent Forward Citations

Loading…