The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 20, 2003
Filed:
Mar. 20, 2001
Gordon C. Taylor, Princeton, NJ (US);
Stewart M. Perlow, Marlboro, NJ (US);
Arye Rosen, Cherry Hill, NJ (US);
Aly E. Fathy, Langhorne, PA (US);
Sridhar Kanamaluru, W. Windsor, NJ (US);
Moniem Esherbiny, Laguna Niguel, CA (US);
Sarnoff Corporation, Princeton, NJ (US);
Abstract
A reconfigurable antenna capable of dynamic reconfigurability of several antenna parameters. Specifically, the present invention is an antenna comprising a plurality of surface PIN devices arranged in a gridlike array. Each of the SPIN devices can be individually activated or deactivated. When a SPIN device is activated, the surface of the device is injected with carriers such that a plasma is produced within the intrinsic region of the device. The plasma can be sufficiently conductive to produce conductor or metal like characteristics at the surface of the device. Various ones of the SPIN devices can be activated to electronically paint a conductive pattern upon the substrate supporting the PIN devices. Through selective activation of the SPIN devices various surface antenna patterns can be produced upon the substrate including dipoles, cross dipoles, loop antennas, Yagi-Uda type antennas, log periodic antennas, and the like. Additionally, the SPIN device grid may be selectively activated to produce holographic antennas. In a holographic antenna the SPIN devices are activated to produce a simulated metallization pattern that is excited by a surface RF wave transmitted onto the substrate from a surface mounted dipole antenna. The surface wave excites a particular antenna pattern depending upon the shape of the activated SPIN devices. Changing the pattern of the holographic antenna elements causes a beam steering and/or frequency adjustments of the antenna.