The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 22, 2003
Filed:
Jul. 07, 2000
Martin Aureliano Hassner, Mountain View, CA (US);
Richard Michael Hamilton New, San Jose, CA (US);
Arvind Motibhai Patel, San Jose, CA (US);
Tetsuya Tamura, Kanagawa, JP;
Barry Marshall Trager, Yorktown Heights, NY (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
A soft error correction algebraic decoder and an associated method use erasure reliability numbers to derive error locations and values. More specifically, symbol reliability numbers from a maximum likelihood (ML) decoder as well as a parity check success/failure from inner modulation code symbols are combined by a Reed-Solomon decoder in an iterative manner, such that the ratio of erasures to errors is maximized. The soft error correction (ECC) algebraic decoder and associated method decode Reed Solomon codes using a binary code and detector side information. The Reed Solomon codes are optimally suited for use on erasure channels. A threshold adjustment algorithm qualifies candidate erasures based on a detector error filter output as well as modulation code constraint success/failure information, in particular parity check or failure as current modulation codes in disk drive applications use parity checks. This algorithm creates fixed erasure inputs to the Reed Solomon decoder. A complementary soft decoding algorithm of the present invention teaches the use of a key equation solver algorithm that calculates error patterns obtained as a solution to a weighted rational interpolation problem with the weights given by the detector side information.