The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 25, 2003
Filed:
Jan. 31, 2000
Robert J. Devins, Essex Junction, VT (US);
Paul G. Ferro, South Burlington, VT (US);
Robert D. Herzl, South Burlington, VT (US);
Mark E. Kautzman, Colchester, VT (US);
Kenneth A. Mahler, Essex Junction, VT (US);
David W. Milton, Underhill, VT (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
A method for developing re-usable software for the efficient verification of system-on-chip (SOC) integrated circuit designs. The verification software is used to generate and apply test cases to stimulate components of a SOC design (“cores”) in simulation; the results are observed and used to de-bug the design. The software is hierarchical, implementing a partition between upper-level test application code which generates test cases and verifies results, and low-level device driver code which interfaces with a core being simulated, to apply the test case generated by the upper-level code on a hardware level of operations. Test application and supporting low-level device driver pairs are used and re-used to test their corresponding component cores throughout the SOC development process, by creating higher-level test control programs which control selected combinations of the already-developed test application and device driver programs to test combinations of SOC components. The method provides for the efficient verification of SOC designs and, consequently, a reduced time-to-market for SOC products, because as the verification software is developed and stored, it becomes possible to test increasingly complex core combinations by creating relatively few high-level test programs which re-use already-existing lower-level software. Ultimately, the task of verifying a complex SOC design may be simplified to developing a single chip-specific test program which selects from already-existing test application, device driver and test control programs to perform a realistic test of a chip-specific combination of cores.