The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 25, 2003
Filed:
Jan. 22, 1999
Eric S. Anderson, Pleasantville, NY (US);
Medical Laboratory Automation, Inc., Lexington, MA (US);
Abstract
One method and apparatus for analyzing clotting characteristics of a blood sample includes the use of a non-linear equation having coefficients capable of being related to the underlying clotting processes. The non-linear equation is curve fit to a waveform of a clotting sample to provide values for the coefficients of the non-linear function. Once the coefficients are obtained, an inference engine may be used to evaluate the non-linear relationship between the coefficients and factor concentrations within the blood sample. Advantageously, the waveform of the actual sample may be detrended to extract a residual oscillatory component to aid in the determination of initial coefficients for simplifying the curve fit operation. The non-linear equation may additionally be used for providing simulated clotting waveforms for testing clot analysis instruments. A residual oscillatory component may advantageously be extracted from the clotting signal. The oscillatory components may be used to provide a high quality clot time indicator for the sample. In addition, the oscillatory component may be used to correct for clot anomalies by correlating the frequency of the oscillatory to various physical characteristics of the blood clot. The oscillatory component may be used to provide initial estimates for values of the coefficients of the logistic. The logistic, because it represents knowledge as to the underlying chemistry of the clotting process, may also be used to provide initial estimates for coefficients of the logistic, and may also be used to enhance the accuracy of existing polynomial template clot analysis techniques. The logistic model may also be used to verify the operation of clot analysis tools.