The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 07, 2003
Filed:
May. 20, 2000
Max Joseph Freidauer, New Haven, CT (US);
Michael Philip Hagle, Mason, OH (US);
General Electric Company, Schenectady, NY (US);
Abstract
A combustor dome assembly includes a spectacle plate having an opening formed therein that defines an inner circumferential edge, at least one swirler assembly defining an inner cylindrical surface, and at least one deflector having an outer cylindrical surface. These components are arranged such that the outer cylindrical surface is joined to the inner circumferential edge and to the inner cylindrical surface. One preferred method of manufacturing the combustor dome assembly includes placing a first ring of joining material over the outer cylindrical surface. Then, the outer cylindrical surface is inserted into the spectacle plate opening so that the first ring is sandwiched between a first surface of the spectacle plate and a shoulder formed on the deflector. A second ring of joining material is next placed over the outer cylindrical surface, and a third ring of joining material is inserted into an annular groove formed in the inner cylindrical surface. The next step is to place the swirler assembly over the outer cylindrical surface so that the second ring is sandwiched between a second surface of the spectacle plate and an end of the swirler assembly and the third ring surrounds the outer cylindrical surface. The first, second and third rings are then heated to a temperature greater than their melting points so that they become molten joining material. The molten joining material is cooled to complete the joint.