The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 10, 2002
Filed:
Sep. 25, 1998
David Alan Bourne, Pittsburgh, PA (US);
Sivaraj Sivarama Krishnan, Bangalore, IN;
Other;
Abstract
A computerized method/system is provided for planning motion of a robot within a free space confined by obstacles, from an initial position to a goal position. In executing the method/system, a plan is generated so that the robot can hold and maneuver a workpiece throughout a sequence of bending operations to be performed by a bending apparatus. A plurality of proposed movements to be made by the robot are proposed for an mth movement within a sequence of movements, and at least a portion of the robot and the obstacles that confine the free space are modeled. A determination is made as to whether a collision will occur between the robot and an obstacle for each proposed movement, and a plan is generated including the sequence of movements by choosing for each movement in the sequence of movements, a proposed movement that will not result in a collision and that will bring the robot closer to the goal position. In choosing proposed movements, an estimated cost associated with each proposed movement may be taken into account. The estimated cost may be based upon a euclidian distance to the goal position from the position of the robot after the particular proposed movement is made as the mth movement, and/or the estimated cost may be determined as a function of the robot travel time from an (m−1) th movement to the mth movement. Different methods are provided for performing fine motion planning and gross motion planning.