The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 15, 2002
Filed:
Apr. 10, 2000
Shane Hart, Houston, TX (US);
Mark Schnitker, Friendswood, TX (US);
Weatherford/Lamb, Inc., Houston, TX (US);
Abstract
The present invention discloses a whipstock assembly for use in a wellbore to form a lateral wellbore therefrom. In one aspect, a whipstock is attached to a cutting tool by a shearable connection whereby the whipstock and cutting tool assembly may be run into the wellbore simultaneously. Upon compressive force from above, the shearable connection fails and the cutting action can begin. The shearable connection is designed to fail in compression but to withstand forces in tension brought about by the whipstock, accessories and extensions required to properly place the whipstock above a preset packer in the wellbore. In one aspect, the shearable connection provides a first set of shearable members with equal shear resistance in tension and in compression. Another set of shearable members provides shear resistance against tensile forces but do not provide shear resistance against compressive forces. The resulting connection is stronger in tension than In compression and failure of the connection due to the weight of the whipstock assembly is less likely. In another aspect of the invention, a retractable finger provides additional shear strength in tension. The retractable finger is spring-loaded and is housed in a slot formed in a lug portion of the whipstock. When the shearable connection is in tension, the finger interferes with a surface formed in the cutter, adding additional shear strength to the connection. When the shearable connection is in compression, the finger folds into the slot, providing no additional resistance against the compressive force.