The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 08, 2002
Filed:
Dec. 08, 1999
Joseph Warren Wright, Lancaster, PA (US);
Anita Sreepadraj Venkatarao, Macungie, PA (US);
Sanders Carl McComsey, Lancaster, PA (US);
Burle Technologies, Inc., Wilmington, DE (US);
Abstract
A photomultiplier tube includes a photocathode and a primary dynode having input and output apertures. A field isolating mesh is positioned at the input aperture of the primary dynode to facilitate the collection of electrons from the photocathode of the photomultiplier to the primary dynode while simultaneously electrostatically shielding secondary emission electrons from the field of the photocathode. The field isolating mesh has a central opening that is dimensioned to maximize the throughput of photoelectrons from the photocathode to the primary dynode while providing effective field isolation in the vicinity of the primary dynode. The central opening in the field isolation mesh provides the further advantage of permitting uniform deposition of photo-emissive materials on the surface of the dynode during manufacture. In an alternative embodiment, the field isolating mesh of the primary dynode is formed in two segments. The first segment is disposed in the input aperture of the primary dynode and the second segment is disposed in offset, spaced parallel relation to the first segment. The photomultiplier according to the disclosed invention provides a significant improvement in electron collection efficiency, pulse height resolution, and magnetic sensitivity compared to known photomultiplier tubes of otherwise similar construction.