The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 03, 2002

Filed:

Oct. 05, 2000
Applicant:
Inventors:

Herman Melvin Presby, Highland Park, NJ (US);

John A. Tyson, Pottersville, NJ (US);

Assignee:

Lucent Technologies Inc., Murray Hill, NJ (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G02B 1/706 ; H04B 1/012 ;
U.S. Cl.
CPC ...
G02B 1/706 ; H04B 1/012 ;
Abstract

A free-space wireless optical communication system is disclosed that utilizes a telescope design having aspherical mirrors, such as a Ritchey-Chretien (RC) telescope. RC telescopes are characterized by a concave primary mirror and a convex secondary mirror each having a hyperbolic shape. The disclosed mirror configuration provides a larger focal plane that allows for automatic alignment between a transmitter and receiver with a stationary or fixed mirror design, further contributing to a lower fabrication cost. Among other benefits, the larger focal plane permits an n×n fiber array to be positioned in the focal plane of the RC optical telescope, thereby enabling point-to-multipoint communications with a single optical telescope. Each fiber in the n×n fiber array of a transmitting telescope can be focused on a different receiving telescope in a wireless optical communication system. In this manner, each fiber in the n×n fiber array sends optical energy over a distinct path to address a given receiving telescope. Likewise, for a multipoint-to-point communication system, an n×n fiber array can be positioned in the focl plane 330 of the RC optical receiving telescope, with each fiber in the n×n fiber array receiving optical energy over a distinct path from a given transmitting telescope. A number of fabrication techniques are also disclosed that permit the optical telescopes of the present invention to be fabricated at a reasonable cost that permits such optical telescopes to be deployed in wireless optical communication systems.


Find Patent Forward Citations

Loading…