The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 20, 2002
Filed:
Jun. 22, 2001
Douglas A. Buchanan, Cortlandt Manor, NY (US);
Evgeni P. Gousev, Yorktown Heights, NY (US);
Carol J. Heenan, LaGrangeville, NY (US);
Wade J. Hodge, Bolton, VT (US);
Steven M. Shank, Jericho, VT (US);
Patrick R. Varekamp, Croton on Hudson, NY (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
An apparatus and method of forming an oxynitride insulating layer on a substrate performed by putting the substrate at a first temperature within the main chamber of a furnace, exposing the substrate to a nitrogen containing gas at a second temperature which is higher than the first temperature, and growing the oxynitride layer on the substrate within the main chamber in the presence of post-combusted gases. The higher temperature nitrogen containing gases are combusted in a chamber outside the main chamber. The higher temperature is in the range of 800 to 1200° C., and preferably 950° C. In a second embodiment, distributed N O gas injectors within the main chamber deliver the nitrogen containing gas. The nitrogen containing gas is pre-heated outside the chamber. The nitrogen containing gas is then delivered to a gas manifold that splits the gas flow and directs the gas to a number of gas injectors, preferably two to four injectors within the main process tube. Gas injection orifices on the order of several millimeters then distribute the pre-decomposed gas to the wafers, producing a more uniformly N-doped wafer load in a batch furnace.