The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 13, 2002
Filed:
Jul. 14, 1999
David Cahen, Rehovot, IL;
Konstantin Gartsman, Rehovot, IL;
Alexander Kadyshevitch, Rehovot, IL;
Ron Naaman, Nes-Ziona, IL;
Abraham Shanzer, Rehovot, IL;
Yeda Research and Development Co. Ltd., Rehovot, IL;
Abstract
A hybrid organic-inorganic semiconductor device is provided as a sensor for chemicals and light, said device being composed of: (i) at least one layer of a conducting semiconductor such as doped n-GaAs or n-(Al,Ga)As; (ii) at least one insulating layer such as of an undoped semiconductor; e.g. GaAs or (Al,Ga)As; (iii) a thin layer of multifunctional organic sensing molecules directly chemisorbed on one of its surfaces, said multifunctional organic sensing molecules having at least one functional group that binds to said surface and at least one another functional group that serves as a sensor; and (iv) two conducting pads on the top layer making electrical contact with the electrically conducting layer, so that the electrical current can flow between them at a finite distance from the surface of the device. The surface-binding functional group of the multifunctional organic sensing molecule may be one or more aliphatic or aromatic carboxyl, thiol, sulfide, hydroxamic acid or trichlorosilane groups. The functional group that serves as a sensor may be a group suitable for binding and detection of metal ions such as Cu , Fe and Ru such as radicals derived from hydroxamic acids, bipyridyl, imidazol and hydroxyquinoline, or a group that is an efficient light absorber at a given wavelength and is suitable for detection of light such as radicals derived from aliphatic or aromatic hydroxamates, substituted aromatic groups such as cyanobenzoyl and methoxybenzoyl, bipyridyl, hydroxyquinoline, or imidazolyl groups to which a metal porphyrin or a metal phtalocyanin residue is attached.