The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 25, 2002

Filed:

Oct. 06, 2000
Applicant:
Inventors:

Randy Clinton Giles, Whippany, NJ (US);

Albert M Gottlieb, Maplewood, NJ (US);

David Thomas Neilson, Old Bridge, NJ (US);

Assignee:

Other;

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G02B 6/26 ; G02B 6/42 ;
U.S. Cl.
CPC ...
G02B 6/26 ; G02B 6/42 ;
Abstract

Signal losses in an optical cross-connect having steerable switching elements for routing optical signals are substantially reduced by controllably and selectively training the steerable switching elements as a function of measured input and output power of a cross-connected optical signal. More specifically, adjustments to the alignment of one or more steerable switching elements associated with a particular cross-connection are performed in a non-intrusive manner to increase the optical signal power in an optical signal while maintaining an active cross-connection of the optical signal. In one illustrative embodiment, optical monitoring arrangements monitor the optical signal power of optical signals coupled to the cross-connect inputs and outputs. The cross-connect includes a switching fabric comprising a plurality of steerable MEMS mirror elements used as switching elements for controllably and selectively directing the light beams within the cross-connect. By comparing the measured optical signal power with a previously stored value representing the expected optical signal power for that cross-connection, small adjustments can then be made, as appropriate, to optimize the alignment of the mirrors associated with the cross-connection. For example, if the difference between the measured and expected optical signal power exceeds a prescribed threshold, then a dithering process is initiated whereby individual mirrors are “walked through” alternate tilt positions until the measured optical signal power has been optimized, e.g., increased.


Find Patent Forward Citations

Loading…